SARDAR RAJA COLLEGE OF ENGINEERING

DEPARTMENT OF COMPUTER APPLICATIONS

Subject Name	:	COMPUTER ORGANIZATION
Subject Code	:	MC9211
Year	:	I – MCA
Semester	:	Ι

Mrs. K.SASIKALA

Asst.Prof / MCA

UNIT I DIGITAL FUNDAMENTALS Number Systems and Conversions – Boolean Algebra and Simplification – Minimization of Boolean Functions – Karnaugh Map, Logic Gates – NAND – NOR Implementation.
UNIT II COMBINATIONAL AND SEQUENTIAL CIRCUITS Design of Combinational Circuits – Adder / Subtractor – Encoder – Decoder – MUX / DEMUX – Comparators, Flip Flops – Triggering – Master – Slave Flip Flop – State Diagram and Minimization – Counters – Registers.
UNIT III BASIC STRUCTURE OF COMPUTERS Functional units – Basic operational concepts – Bus structures – Performance and Metrics – Instruction and instruction sequencing – Hardware – Software Interface – Addressing modes – Instructions – Sets – RISC and CISC – ALU design – Fixed Point and Floating point operation.
UNIT IV PROCESSOR DESIGN Processor basics – CPU Organization – Data path design – Control design – Basic concepts– Hard wired control - Micro programmed control– Pipeline control – Hazards-

UNIT V MEMORY AND I/O SYSTEM

Memory technology – Memory systems – Virtual memory – Caches – Design methods – Associative memories – Input/Output system – Programmed I/O – DMA and Interrupts – I/O Devices and Interfaces.

TEXT BOOKS:

Super scalar operation.

1. Morris Mano, "Digital Design", Prentice Hall of India, 1997.

2. Carl Hamacher, Zvonko Vranesic and Safwat Zaky, Firth Edition, "Computer Organization", Tata McGraw Hill, 2002.

REFERENCES:

1. Charles H. Roth, Jr., "Fundamentals of Logic Design", Jaico Publishing House, Mumbai, Fourth Edition, 1992.

2. William Stallings, "Computer Organization and Architecture – Designing for Performance", Sixth Edition, Pearson Education, 2003.

3. David A. Patterson and John L. Hennessy, "Computer Organization and Design: The Hardware/Software interface", Second Edition, Morgan Kaufmann, 2002.

4. John P. Hayes, "Computer Architecture and Organization", Thrid Edition, Tata McGraw Hill, 1998.

MC9211 COMPUTER ORGANIZATION

8

10

9

9

9

TOTAL = 45 Hours

Description:

- Digital fundamentals gives information about the number system conversion and also describes about logic gates, NAND and NOR operatios.
- The combinational and sequential circuits deals with encoding and decoding techniques. The State diagrams are used to know about the data flow in the circuits.
- A command set, is the basic set of commands, or instructions, that a microprocessor understands. One of the principal characteristics that separates **RISC** from **CISC** microprocessors is the size of the instruction set -- RISC microprocessors have relatively small instruction sets whereas CISC processors have relatively large instruction sets.
- A pipelined processor allows multiple instructions to execute at once, and each instruction uses a different functional unit in the datapath.

Objectives:

- 1. Students will learn the fundamentals of computer organization and its relevance to classical and modern problems of computer design
- 2. Students will be able to identify where, when and how enhancements of computer performance can be accomplished.
- 3. Students will learn the sufficient background necessary to read more advance texts as well as journal articles on the field.

Hours	Lecture Topics	Text Book	
	UNIT I DIGITAL FUNDAMENTALS		
1	Number Systems and Conversions		
2	Boolean Algebra		
3	Simplification		
4	Minimization of Boolean Functions	T1	
5	Karnaugh Map		
6	Logic Gates		
7	NAND		
8	NOR Implementation		
UNIT I			
9	Design of Combinational Circuits		
10	Adder & Subtractor		
11	Encoder & Decoder		
12	MUX & DEMUX		
13	Comparators, Flip Flops	T1	
14	Triggering – Master – Slave Flip Flop		
15	State Diagram		
16	Minimization		
17	Counters		
18	Registers		
UN	IT III BASIC STRUCTURE OF COMPUTERS		
19	Functional units		
20	Basic operational concepts		
21	Bus structures – Performance and Metrics		
22	Instruction and instruction sequencing	тэ	
23	Hardware – Software Interface Addressing modes	12	
24	Instructions – Sets		
25	RISC and CISC		
26	ALU design		
27	Fixed point and Floating point operation		
	UNIT IV PROCESSOR DESIGN		
28	Processor basics		
29	CPU Organization		
30	Data path design		
31	Control design	T2	
32	Basic concepts		
33	Hard wired control & Micro programmed control	l	
34	Pipeline control		
35	Hazards		

Micro Lesson Plan

36	Super scalar operation	
	UNIT V MEMORY AND I/O SYSTEM	
37	Memory technology	
38	Memory systems	
39	Virtual memory – Caches	
40	Design methods	тэ
41	Associative memories	12
42	Input/Output system	
43	Programmed I/O	
44	DMA and Interrupts	
45	I/O Devices and Interfaces.	